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Multi-Channel Signal Separation by Decorrelation 
Ehud Weinstein, Meir Feder, and Alan V. Oppenheim 

Abstract-In a variety of contexts, observations are made of 
the outputs of an unknown multiple-input multiple-output linear 
system, from which it is of interest to identify the unknown system 
and to recover the input signals. This often arises, for example, 
with speech recorded in an acoustic environment in the presence 
of background noise or competing speakers, in passive sonar 
applications, and in data communications in the presence of cross- 
coupling effects between the transmission channels. In this paper 
we specifically consider the two-channel case in which we observe 
the outputs of a 2 x 2 linear time invariant system. Our approach 
consists of reconstructing the input signals by assuming that they 
are statistically uncorrelated and imposing this constraint on the 
signal estimates. In order to restrict the set of solutions, additional 
information on the true signal generation and/or on the form 
of the coupling systems is incorporated. Specific algorithms are 
developed and tested. As a special case, these algorithms suggest 
a potentially interesting modification of Widrow’s least-squares 
method for noise cancellation, when the reference signal contains 
a component of the desired signal. 

I. INTRODUCTION 

N A VARIETY of contexts, observations are made of I the outputs of an unknown multiple-input multiple-output 
linear system from which it is of interest to identify the system 
and to recover its input signals. For example, in problems 
of enhancing speech in the presence of background noise, 
or separating competing speakers, multiple microphone mea- 
surements will typically have components from both sources, 
with the linear system representing the acoustic environment. 
Similar problems occur in passive sonar applications, and in 
data communication in the presence of cross-coupling effects 
between the channels. 

In this paper we consider specifically the two-channel case, 
illustrated in Fig. 1, in which we observe the outputs y l ( t )  

and y 2 ( t )  of a 2 x 2 linear time invariant (LTI) system with 
inputs s l ( t )  and s 2 ( t ) ,  and with frequency response 
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Fig. 2. The least squares method. 

where H11 and H22 represent the transfer functions of each 
channel separately, and H12 and Hal represent the cross- 
coupling effects between the channels. 

The most widely used approach to the two-channel sig- 
nal enhancement, or separation, problem was suggested by 
Widrow et al. [13]. In their approach it is assumed that H11 

and H22 are identity systems and H21 is zero, as illustrated 
in Fig. 2(a) in which case s2(t )  (the interfering signal) is 
coupled into the first (primary) sensor through the unknown 
system H12 whose input is the signal measured by the second 
(reference) sensor. It is suggested in [13] that the unknown 
system be identified by minimizing the average power of the 
reconstructed, or estimated, signal and use it for cancellation 
of the interfering signal component at the primary sensor, 
as illustrated in Fig. 2(b). Minimizing the average power 
corresponds to identifying, or estimating, the unknown system 
H12 by a least-squares fit of the second (reference) sensor 
signal to the primary sensor signal. This method will therefore 
be referred to as the least squares (LS) method. Recursive and 
sequentiauadaptive schemes based on the least mean squares 
(LMS) and the recursive least squares (RLS) algorithms have 
been proposed in [13] and in, e.g., [8], respectively. 

The LS method has been successful in a wide variety of 
contexts. However, a critical assumption in that approach 
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is that there is no leakage of the desired signal s l ( t )  into 
the reference sensor. If both signals are coupled into each 
sensor, then with the LS approach a portion of the desired 
signal is typically canceled together with the interfering signal. 
Since the desired signal may be canceled with some delay, or 
change in phase, it introduces a reverberant distortion in the 
reconstructed signal. 

An approach to the two channel signal enhancement prob- 
lem when both signals are coupled into each channel is 
presented in [3]. In that approach it is assumed that s l ( t )  (the 
desired signal) is a Gaussian autoregressive (AR) process, and 
s2(t) (the interfering signal) is uncorrelated white Gaussian 
noise. Both coupling systems Hlz and H21 may be non-zero, 
and are modeled as discrete-time finite impulse response (FIR) 
filters. The problem is formulated as a maximum likelihood 
(ML) estimation problem, and the iterative estimate-maximize 
(EM) a l g o r i w  is used for its solution. Recursive and sequen- 
tial algorithms based on this approach are developed in [12]. 

In [2], the specific problem in which the signals are coupled 
into each channel by a constant gain is considered. This 
problem occurs in satellite communication, when transmitting 
independent signals (messages) within the same frequency 
band and in orthogonal polarization in order to increase 
the capacity of the communication link. Due to the prop- 
agation conditions in the medium, some degree of cross- 
coupling between the channels will occur. It is suggested 
in [2] to use a cross-coupled cancellation system, consisting 
of two decoupling gains, for separating the signals. In order 
to match the decoupling gains to the unknown coupling 
gains, it is suggested to use pilot tones (i.e., reference sig- 
nals) in each channel. Following this work, three different 
approaches named power-power, correlation-correlation, and 
power-correlation, were suggested in [l]  in order to identify 
the caupling gains without the need for reference signals. In the 
power-power approach, the gains are adjusted by iteratively 
minimizing the average powers of the reconstructed signals; 
in the correlation-correlation approach, the gains are adjusted 
by minimizing the cross-correlation between the reconstructed 
signals at the same time instant (i.e., at lag zero); and the 
power-correlation approach is the combination of the two. 
However, as pointed out in [l], all these approaches are 
insufficient to solve the problem (all of them lead to a single 
equation that is insufficient to solve for the two unknown 
gains), and additional processing, referred to in [ l ]  as a 
“signal discrimination network” is suggested. An alternative 
approach based on minimizing the cross-correlation at lag 
zero between nonlinear functions of the reconstructed signals 
is proposed in [4]. By using two different combinations of 
nonlinear functionals, it is possible to identify both coupling 
gains without the need for a discrimination network. However, 
this approach is also restricted to the special case in which the 
coupling systems are constant gains. 

In this paper, we consider the more general case in which 
both coupling systems are possibly non-zero frequency depen- 
dent unknown LTI filters. Several approaches are presented 
for solving the problem, and the relation to previous work 
is indicated. The work presented in this paper has several 
potential applications as indicated in [ 101. 

11. SIGNAL SEPARATION BY DECORRELATION 

To simplify the exposition we first consider the case in 
which H11 and H22 are unity transformations, i.e., Hll (w)  = 
H22(w) = 1 for all w. Although this case is somewhat 
restrictive, it represents the important and interesting problem 
in which the desired signals s l ( t )  and s g ( t )  are the signals 
measured at each sensor output in the absence of the other 
source signal, and the systems Hlz and Hzl represent the 
coupling effects. The more general case will be considered in 
the sequel. With H11 and H22 as unity transformations, the 
observed signals y l ( t )  and y ~ ( t )  arg the outputs of a 2 x 2 
LTI system with inputs s l ( t )  and s2(t), and with frequency 
response 

We may assume that 

1 - H12(W)HZI(W) # 0 vw.  (3) 

If this assumption is not satisfied, @en 1-I is not invertible, 
in which case s l ( t )  and s z ( t )  could not be recovered from 
yl(t)  and yz(t) even if 1-I is known. We note that in case of 
environments subject to reverberant or multipath effects, the 
inverse of ‘H may be ill-conditioned. 

We shall assume that s l ( t )  and s ~ ( t )  are sample functions 
from statistically uncorrelated wide-sense stationary random 
processes. To simplify the exposition we shall further assume 
that s l ( t )  and s z ( t )  are zero-mean, so that the assumption that 
they are uncorrelated is equivalent to 

E{S,(t)S;(t - ‘T)} = 0 V’T (4) 

where E{ .} stands for expectation, and * denotes the complex 
conjugate. It should be noted that the derivation and results 
apply equally to the more general case of non-zero and 
possibly time-varying means, since they can be phrased in 
terms of convariances. The important case in which the signals 
may be nonstationary will be addressed in Section 111. 

If the systems Hlz and H Z I  were known, then s l ( t )  and 
s 2 ( t )  could be recovered from y l ( t )  and y2(t)  by inverse 
filtering. However, since in most cases of interest Hlz and HZI 
are unknown, we need a method or a criterion for identifying 
or estimating them. 

Our approach consists of finding estimates a 1 2  and h-21 
of Hlz and H21, respectively, so that by performing inverse 
filtering the estimated, or reconstructed, signals i l ( t )  and &(t) 
are statistically uncorrelated, that is, 

E{il( t )E;( t  - 7)) = 0 v7. ( 5 )  

It should be stressed that even if the signals s l ( t )  and s z ( t )  
are assumed to be statistically uncorrelated, it does not imply 
that a selected estimation criterion such as the minimum mean 
square error criterion will generate statistically uncorrelated 
signal estimates. The key idea of our approach is to turn the 
assumption that the signals are uncorrelated into the estimation 
criterion. As we will show, the solution based on this criterion 
reduces exactly to the LS solution in the simplified case 
considered in [ 131. 
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Fig. 3. The reconstruction system 

Fig. 4. An alternative implementation of the reconstruction system. 

As illustrated in Fig. 3, Sl(t)  and &(t)  are the output of 
the 2 x 2 LTI system with inputs y l ( t )  and y2(t), and with 
frequency response 

(6) 

1 1 W ( w )  = 

where, as in (3), it is assumed that 

1 - f i 1 2 ( W ) f i 2 1 ( W )  # 0 VUJ. (7) 

An alternative system for generating i l ( t )  and i2(t)  is illus- 
trated in Fig. 4. 

Using the well-known relationship for the power spectra 
between inputs and outputs of an LTI system, 

1 

1 

where P~,B, (w) 2.3 = 1 . 2  are the auto- and cross-spectra of 
Sl(t) and &(t), and P y t y J ( ~ ) z , j  = 1 . 2  are the auto- and 
cross-spectra of yl(t)  and y2(t). 

Performing the matrix multiplication in (8), and observing 
that the decorrelation condition in (5) implies that Pil s2  ( w )  = 
0 for all w, we obtain 

PYlYL(W) - f i 1 2 ( 4 P Y , Y 2 ( 4  - f i ; l ( 4 p Y l Y l  ( U )  

+ f i l z ( 4 f i ; , ( 4 ~ y 2 , , ( 4  = 0 (9) 

where we note that PYtyJ(w)z.j  = 1 .2  would in practice be 
estimated from the measured signals y l ( t )  and y2(t). Any 
combination of fi1, and f i 2 1  that satisfies (9) results in signal 
estimates i 1  ( t )  and .& ( t )  that are statistically uncorrelated. 
Clearly, this equation does not specify a unique solution for 
Hl2 and H21. We could arbitrarily choose H21, in which case 
H 1 2  is specified by 

f i 1 2 ( W )  = 
P Y 2 Y 2  ( U )  - f i ; l (W)PY,Yl  ( a )  

or we could arbitrarily choose H12, in which case H z 1  is 
specified by 

As a special case, if we choose f i 2 ,  = 0 then (10) reduces to 

(12) 

This corresponds exactly to the LS solution for the simplified 
scenario in which it is assumed that there is no coupling of the 
desired signal into the reference sensor, i.e., when the actual 
coupling system H21 is zero. Thus, the LS solution is one 
of many possible solutions of the decorrelation equation. It 
is consistent with the observation in [7] that the LS method 
causes the desired signal estimate to be statistically uncorre- 
lated with the reference sensor signal. The LS method has 
been successful in a wide variety of contexts. However, it is 
widely recognized that if the assumption of zero coupling is 
not satisfied, its performance may seriously deteriorate. Eq. 
( 10) therefore suggests a potentially interesting alternative to 
the LS method that takes into account a pre-specified non-zero 
coupling. 

To determine the relation between the solutions of the 
decorrelation equation and the actual (true) coupling filters 
H12 and H21, we use the relation 

PY 1 Y 2 ( w 1 
H 1 2 ( W )  = ~ 

PY2Y2 ( U )  . 

where PSlsl(w) and Psrs2(w) are the power spectra of s l ( t )  
and s p ( t ) ,  respectively. Substituting (13) into (9) and carrying 
out straightforward algebraic manipulations, we obtain 

P S I S l  ( W ) [ l  - f i 1 2 ( 4 H Z l ( W ) I [ H 2 1 ( i u ' )  - f i 2 1 ( 4 1 *  

+ ~.s,s2(.J)[1 - fi21(W)H12(W)I*[H12(W) - f i 1 2 ( 4 1  = 0 
(14) 

If fiZl(d) = H21(~) ,  then f i l z ( w )  = H 1 2 ( ~ ) ,  provided that 
PSLSL(u) is strictly positive and that the condition in (3) is 
satisfied. Similarly, if fi12(w) = H12(w),  then fi21(w) = 
H 2 1 ( ~ ) ,  provided that Psls1(w) is strictly positive. Thus, if 
one of the coupling filters is known, then the decorrelation 
criterion yields the correct solution for the other coupling filter. 

There are practical situations in which one of the coupling 
systems is known a priori or can be measured independently. 
For example, in speech enhancement, either the desired speech 
signal or the interfering signal may be in a fixed location and 
therefore the acoustic transfer functions that couple it to the 
microphones can be measured a priori. In such cases either 
(10) or ( 1  1) can be used to find the other coupling system. 
Another interesting application is the problem of separating 
competing speakers. By identifying a quiet period for one of 
the speakers, the acoustic transfer function with respect to the 
other speaker can be estimated separately and then used to 
identify the unknown transfer function when both speakers 
are active. 
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A common measure of performance is the ratio of the 
power spectrum of the desired signal component to the power 
spectrum of the residual, or interfering, signal component. 
Since the estimates &(t) and &(t) are the outputs of the 2 x 2 
system with inputs sl(t) and s g ( t ) ,  and with the frequency 
response 

1 
1-1((W)fi-1(w) = 

1 - fil2(W>fi21(4 

then the post-processing signal-to-interference ratio ( S / I )  at 
the first and second sensors are 

where in (16) the interference is the signal component involv- 
ing sz(t) ,  and in (17) the interference is the signal component 
involving sl(t). If fi12(w) = H~z(w) and fi21(w) = Hz~(w),  
we obtain infinite S/I at both sensor outputs, as we would 
expect. 

Using the relation in (14), it can easily be verified that 

(SI41 = (S /42 .  (18) 

This result is consistent with the power inversion principle 
associated with the LS method. If we regard sl(t) as the 
desired signal and s p ( t )  as the interfering signal, then (18) 
asserts that the post-processing signal-to-interference ratio 
at the first (primary) sensor is equal to the interference-to- 
signal ratio at the second (reference) sensor. Since in the 
LS approach no processing is applied to the reference sensor 
output, the post-processing signal-to-interference ratio at the 
primary sensor is limited by the interference-to-signal ratio at 
the reference sensor, that is, 

However, in our decorrelation approach, if H21 or a close 
estimate of it is provided, then using (10) a close estimate 
of H ~ z  can be obtained, and the resulting SI1 at the first 
(primary) sensor can be made very large as indicated by (16), 
even if H21 is non-zero. 

We may also consider the more general case illustrated in 
Fig. 1 in which yl(t) and y2(t) are the outputs of a general 
2 x 2 LTI system ‘).t with inputs sl(t) and sz(t) ,  and with 
the frequency response given by (1). In this case we need to 
identify the four systems H i j i , j  = 1,2.  We assume that 1-1 
is invertible, and that Hll and H22 are also invertible. The 
estimated, or reconstructed, signals il(t) and &(t) are the 
outputs of the inverse filter fi-’ whose frequency response is 

1 
fi-l(u) = 

&l(W)fi22(W) - fil2(4&1(4 

Fig. 5.  The system for generating s l ( t )  and s , ( t )  

where Z?ij(u)Z,j = 1,2  denote the estimates of Hij(~)Z,j  = 
1,2.  Requiring &(t)  and &(t)  to be uncorrelated, and fol- 
lowing a development similar to that which led to (9), we 
obtain 

P Y l Y Z ( W )  - Gl2(4PY2YZ(W) - G ; 1 ( 4 p Y l v 1 ( 4  
+ G l z ( 4 G ; , ( 4 ~ y ~ y l  (U)  = 0 (21) 

where 

G 1 2 ( W )  = f i 1 2 ( W ) / w - 4  (22) 

G 2 1 ( W )  = fi21(W)/&l(4. (23) 

and 

Equatjon (21) is identical in form tp (9), except that fin 
and Hal y e  replaced by G12 and G21, respectively. Thus, 
even if Hij = H;j i , j  = 1,2,  i.e., ’H is known, then 
using the decorrelation method we can only identify the ratios 
G12 = Hl2/HZ2 and G21 = HZ1/Hll. Consequently, we can 
only identify the signals Bl(t) = Hll{sl(t)} (i.e. the output of 
Hll with input sl(t)) and &(t) = H22{sZ(t)}, as illustrated 
in Fig. 5.  This result is intuitively reasonable. If s l ( t )  and 
sz ( t )  are statistically uncorrelated, then &(t) and h( t )  are 
also uncorrelated. Therefore, using the decorrelation criterion 
we cannot distinguish the pair sl(t) and sz ( t )  from the pair 
&(t) and B g ( t ) .  However, in some problems the recovery of 
the desired signals up to the shaping filters H11 and H22 may 
be sufficient. For example, in the problem of separating com- 
peting speakers, if one of the speakers is near one microphone 
and the other speaker is near the other microphone, then H11 
and H22 are nearly unity transformations, and the recovery of 
&(t) and &(t)  may be sufficient for intelligibility. 

111. UTILIZING ADDITIONAL 
INFORMATION FOR SIGNAL SEPARATION 

If both coupling systems are unknown, the decorrelation 
criterion is insufficient to solve the problem, and some addi- 
tional information or constraints are needed on the true signal 
generation and/or on the form of the coupling systems. 
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As discussed above, any solution resulting from the decor- 
relation criterion must satisfy (14). One possible solution is 
the desired solution: 

f i i z ( ~ )  = H i z ( ~ ) ,  f i z i (w)  = H 2 1 ( ~ )  (24) 

in which case i?l( t)  = sl(t), & ( t )  = s 2 ( t )  and the signals are 
exactly recovered, provided that 3-1 is given by (2). Another 
desired solution is 

f i l Z ( 4  = 1/H21(@), f i Z l ( 4  = 1 / H 1 2 ( W )  (25) 

where we have assumed that Hlz and H21 are invertible. It is 
easy to verify that in this case &(t)  = H 1 2 { ~ 2 ( t ) }  and &(t)  = 
H 2 1 { s l ( t ) ) ,  and the source signals can be recovered either by 
applying Hzl = HG1 to i l ( t )  and f i ~  = HG1 to & ( t ) ,  or by 
performing sl(t) = yl ( t )  - 2 1 ( t )  and s 2 ( t )  = y 2 ( t )  - &(t) .  

While the solutions given by (24) and (25) are both ac- 
ceptable since they allow signal recovery, in general, unless 
additional information is given, other non-desired solution may 
exist as well. We shall present several approaches that may 
lead to the desired solutions. 

A. Signal Separation based on Statistical Independence 

In Section I1 we have assumed that the signals sl( t)  and 
s 2 ( t )  are statistically uncorrelated. If the signals come from 
independent sources, then it may in fact be reasonable to 
assume that they are statistically independent, which is a 
stronger condition if the signals are not jointly Gaussian 
processes. By imposing statistical independence between the 
reconstructed signals i l ( t )  and &(t ) ,  we obtain additional 
constraints involving high-order cross-cumulants/spectra. This 
idea is developed in [14], where it is shown that the only 
possible solutions in this case are the desired solutions given 
by (24) and (25). 

B. Separation of Nonstationary Signals 

In Section I1 we have assumed that the signals sl( t)  and 
s 2 ( t )  are jointly stationary processes. However, in many prac- 
tical situations, the signals are more typically nonstationary. If 
s1 ( t )  and s2 ( t )  are statistically uncorrelated but nonstationary 
we require that 

E{sl(t)s;(t - 7))  = 0 vt. 7. (26) 

This imposes a stronger condition on the reconstructed signals. 
Specifically, let us make the simplifying but often realistic 
assumption that the signals are quasi-stationary, so that if 
we divide the observation interval into sub-intervals then the 
cross-correlation is stationary (i.e., independent of the time 
origin t )  over each sub-interval. By imposing the decorrelation 
condition over each sub-interval we obtain, in accordance with 
(9), the following set of equations: 

pi:; ( U )  - &2(4Py(,my; ( U )  - fi;,(w)P$;)1 ( U )  

+ fil2(U)fi;,(W)P;2my: ( U )  = 0 
m = 1,2  ,...,Ad (27) 

where Pig!(~)z,j = 1,2 are the auto- and cross-spectra 
of yl(t)  and y 2 ( t )  associated with the mth sub-interval, 

and M is the number of sub-intervals. If M = 2, we 
obtain two equations that can be solved for the two unknown 
filters H12 and H Z 1 .  If M > 2, we have more equations 
than unknowns, and we may use a least-squares solution. In 
practice, P::!(U) are estimated from the observed data so 
that if M is too large, each sub-interval may be too small, in 
which case we have an overdetermined set of equations, but 
each equation may have large statistical variance. Also, the 
decorrelation equations associated with adjacent time segments 
may be statistically related. To reflect that, we may use a 
weighted least-squares solution in which we give more weight 
to information provided by time segments that are far apart. 
Recursive and time-adaptive solutions can also be obtained in 
which the cross-correlation associated with the most current 
data segments is weighted more heavily. This may be useful 
in situations where the coupling filters are also slowly time 
varying, e.g., when there is relative motion between sources 
and receivers, and we want an adaptive algorithm that is 
capable of tracking the varying characteristics of the channel. 
All these issues must be explored in depth. 

C. Signal Separation by Spectral Matching 

In many problems of interest the detailed spectral properties 
of sl(t) and s 2 ( t )  may be known. This prior information 
can be exploited by matching the power spectra of the re- 
constructed signals to the known spectra, i.e., Pi,i,(w) = 
Psts, ( w ) i , j  = 1,2. Performing the matrix multiplications in 
(8), we obtain the following set of equations: 

PY1Y2(W) - f i l 2 ( 4 P Y Z Y Z ( W )  - f i X 4 P Y l Y 1 ( 4  
+ f i 1 2 ( 4 f i ; 1 ( 4 P Y Z Y l  ( U )  

= 11 - Hlz(~)E^121(~)12~,l,,(~) (28) 

PY*Y2(W) - f i 2 1 ( 4 P Y 1 Y 2 ( 4  - f i ; l ( 4 P Y z Y l  ( U )  

+ I f i 2 1 ( 4 2 P Y l Y l ( 4  

= I1 - ~ 1 2 ( ~ ) f i 2 1 ( ~ ) I 2 ~ s * 9 * ( ~ )  (30) 

If P,,,, ( U )  i . j  = 1,2 are given, then (28)-(30) are sufficient 
for solving for both coupling filters (note that (29) and (30) are 
real-valued equations, and (28) is a complex-valued equation, 
where H12 and H 1 2  are complex-valued variables). It is easy 
to verify that (24) is a solution to (28)-(30). Conditions under 
which this solution is unique can also be specified. 

With this approach it may be possible to work with the 
more general system model and identify the direct paths H11 
and H22. We may also invoke the possible nonstationarity 
of the signals to obtain additional equations and to improve 
identifiability. 

We note that (9) is a special case of (28), obtained by 
substituting P,, s2 ( U )  = 0. It therefore suggests a modification 
of the decorrelation approach in case s l ( t )  and s Z ( t )  are 
not uncorrelated, but have a prespecified cross-correlation 
function. 
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D. Signal Separation Using Constraints 
on the Coupling Systems 

An alternative approach to reducing the set of possible 
solutions to the decorrelation equation is to impose constraints 
on the form of the coupling systems. For example, if we restrict 
the coupling systems to be constant gains H ~ z ( u )  = h 1 2  and 
H 2 1 ( w )  = hzl ,  which is the case considered in [l], [2], and 
[4], then, as shown in [ l  11, the only two possible solutions to 
the decorrelation equation are given by (24) and (25) which 
in this case reduce to 

h i 2  = hiz,  
h 1 2  = l / h 2 1 ,  

A 2 1  = hzi 
h z 1  = l / h l z .  

In fact, in this simplified case it is sufficient to use the 
decorrelation criterion in (5) at only two different values of 
T to obtain two linearly independent equations for solving 
for the two unknown gains. The only condition required for 
the existence of these solutions is that the autocorrelation 
functions of s1 (t) and s2 (t) are not proportional to each other, 
i.e. that s l ( t )  and s z ( t )  can be distinguished based on their 
normalized autocorrelation functions. However, we note that 
the decorrelation condition only at T = 0, as suggested in [l], 
is insufficient to solve the problem. 

A more general and certainly more interesting case is that 
in which the coupling systems are assumed to be discrete-time 
finite-impulse-response (FIR) filters. Under the FIR constraint 
the solution given by (25) is excluded. Sufficient conditions 
under which the solution in (24) is the only solution can be 
specified. However, we note that the FIR restriction is essential 
in order to obtain a unique solution, or at least a reduced set 
of solutions. As the number of FIR coefficients increases, the 
solutions become more and more ill-conditioned, and in the 
limit we may lose identifiability. 

There are other structures for coupling systems that may 
lead to the desired solution. For example, in passive sonar 
applications, the coupling systems describe the propagation 
delays of the signals from the sources to the receiving sensors. 
As long as Hlz  and Hzl can be described by a finite number 
of (unknown) parameters, we may obtain the desired solution 
or, at least, a reduced set of solutions to the decorrelation 
equation. 

IV. ALGORITHM DEVELOPMENT 

In this section we present possible algorithms for signal 
separation based on the decorrelation criterion. In our de- 
velopment we let the decoupling systems H 1 2  and H Z I  be 
discrete-time causal FIR filters, of the form 

91 

1?12(w) = a k e - j w k  (31) 
k=O 

where q 1  and qz are some prespecified filter orders. Simi- 
lar algorithms can be developed for other structures of the 
decoupling systems. 

With the decoupling systems of the form (31) and (32), the 
estimated signals &(t )  and &(t)  can be generated either by 
(see Fig. 4) 

91 

i l ( t )  = y l ( t )  - a k i Z ( t  - k) (33) 
k=O 

92 

w 2 ( t )  = Y 2 ( t )  - b k Y l ( t  - k) (36) 
k=O 

where & ( t )  and &(t)  are generated from y ( t )  and v 2 ( t )  by 

91 +92 

C k i i ( t  - k )  = = 1 , 2  (37) 
k=O 

where 
k 

c k  = 6 k  - 1 a l b k - 1  k = 0, 1 ,  ‘ ’ ‘ ,  ( q 1  + q z )  (38) 
1=0 

where 6 k  is the Kronecker delta function. 
We want to adjust the U k ’ s  and the b k ’ s  to satisfy the 

decorrelation condition in (9). We may consider the following 
iterative algorithm: For a given set of b k ’ s ,  adjust the U k ’ s  

to satisfy (lo), and for a given set of a k ’ s ,  adjust the b k ’ s  

to satisfy (1 1). We shall find it convenient to express these 
equations in the time domain. To do so, we note that 

where Pyt., ( U )  denotes the cross-spectrum between y i ( t )  and 
wj(t). Substituting (39) in (10) and ( l l ) ,  we obtain 

p Y Z v 2 ( 4 f i l 2 ( 4  = P Y l V 2 ( 4  (40) 

Inverse Fourier transforming, we obtain 

92 

(43) b k C y i v i  ( T  - I C )  = c ~ z v l  

where cy,u, ( T )  is the cross-correlation function between yi(t) 
and w ~ j  ( t ) ,  defined by 

(44) 

k=O 

cy,&) = E{y;(t)vj.(t - 7 ) )  
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Expressing (42) for 7 = 0,1 ,  . . .  , q1 and (43) for T = 
0,1,2,  . . , q z ,  and concatenating the equations, we obtain 

Cy2'2a = Gy1tJ2 (45) 

where 

and 

where 

- Y,(t) = [Yl(t)Yl(t - l ) . ' . Y l ( t  - q2) IT  

y,(t) = [yz(t)yz(t - 1) ' .  . YZ(t - q1)IT 

- v ; ( t )  = [ v ; ( t )v ; ( t  - l)'..w;(t - q2)I7 

(53) 

(54) 

(55) 
g; ( t )  = [ ~ ; ( t ) v ; ( t  - 1) . . . v ; ( t  - q1)IT (56) 

Equations (45) and (46) are the time domain equivalents of 
(10) and (ll), respectively. We observe that Cy and cYltJ2 
depend only on b, while Cy depend only on a. 
Therefore, for any given b,-G solution for a is 

-2-2 

and 

and for any given a the solution for b is 
(57) 

By alternating between (57) and (58) we obtain an iterative 
algorithm for adjusting both filter coefficients. Note that this 
is not the only algorithm for solving the decorrelation equation. 
The Gauss method or the Newton-Raphson or some other 
coordinate-search algorithm may exhibit better convergence 
behavior. We further note that if both g and b are unknown, 
undesired solution may exist and so it is not guarateed that 
the algorithm converges to the desired solution. In this case 
additional informatiodconstraints may be incorporated in or- 
der to obtain a desired solution, based on the discussion 
in the previous section. Nevertheless, as we shall see, this 
algorithm leads to potentially interesting extensions of the least 
mean squares (LMS) and the recursive least squares (IUS) 
algorithms for the problem considered here. 

Since the correlation functions appearing in (57) and (58) 
are unknown, they are approximated by their sample estimates: 

t=l 
s 

~ 

41 I 

t = l  

where 01 and pz are real numbers between 0 and 1 .  In 
(59)-(62) we have omitted the multiplying factors since they 
cancel each other. To achieve maximum statistical stability, 
we choose p1 = p2 = 1. However, if the signals and/or the 
coupling systems exhibit nonstationary behavior over time, 
it may be preferable to choose B1. 0 2  < 1. In that way 
we introduce exponential weighting that gives more weight 
to current data samples, and we have in effect an adaptive 
algorithm that is capable of tracking the varying characteristics 
of the underlying system. 

Substituting (59) and (60) into (57) and following the de- 
velopment in the Appendix, we obtain the following recursive 
algorithm for adjusting g (for a given 4):  

a( t )  = a(t - 1) + Q ( f ) Q ; ( f ) ~ l ( t : a ( t  - 1)) (63) 

where 

where a ( t )  is the solution to ( 5 7 )  based on data (i.e., on sample 
averages) to time t ,  and z ' l ( t : g ( t  - 1)) is the signal in (35) 
computed at a = a(t - 1). 

In a similar way we obtain 

b ( t )  = b(t - 1) + R ( t ) C ; ( t ) t ' * ( f : b ( t  - 1)) (65) 

where 

where b( t )  is the solution to (58) based on data to time t ,  and 
vg( t ;b( t  - 1)) is the signal in (36) computed at b = b(t - 1). 
We therefore have an iterative-recursive algorithm in which for 
a given the vector a is adjusted recursively in t using (63) 
and (64), and for a given a the vector b is adjusted recursively 
using (65) and (66). 

To convert this iterative-recursive algorithm into a sequen- 
tial algorithm, we propose replacing a and b by their current 
estimates. This corresponds to replacing w p ( t )  in (63) and (64) 
by wZ(t:b( t - l ) ) ,  and 7'1(t) in (65) and (66) by v l ( t ; a ( t - l ) ) .  

An alternative approach for deriving a sequential algorithm 
is obtained by rewriting (45) and (46) in the form 

cy2111 - Cy1yV1b = E{CF(t)UZ(t)).  (68) 

Applying Robbins-Monro first-order stochastic approximation 
methods [5] ,  [9], (67) and (68) give rise to the following 
sequential algorithm: 
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Fig. 6. The speech signals: (a) “He has the bluest eyes.’’ (b) “Line up at Fig. 8. The recovered signals using the decorrelation method. 
the screen door.” 

““’I 
Fig. 9. The recovered signal using the least squares method. 

see [8]) for solving the indicated least-squares problem. The 
algorithms developed in this section can therefore be viewed 
as extensions of the LMS and RLS algorithms for the case 

sources, and either one or both coupling systems are unknown. 
As an illustration of performance, we have considered the 

following example: s l ( t )  and sZ(t)  are the sampled speech 

b 

t where each of the observed signals has components from both 
(b) 

Fig. 7. The measured signals. 

signals shown in Fig. 6,  corresponding to the sentences “He 
has the bluest eyes” and “Line up at the screen door,” b(t)  = b(t - 1) + rz(t)v;(t;a(t - l ) )w(t ;b( t  - 1)) (70) 

where n ( t )  and yz( t )  are some preselected gains that may 
depend on the time index t. To ensure convergence under 
stationary conditions, it is recommended to choose y; ( t )  i = 
1 ,2  to be positive sequences such that (see, e.g., [6]) 

03 00 

lim y;( t )  = 0, Cy;(t) = 00, Cy,2(t) < 00 

e.g., y; ( t )  = y; / t .  However, if the signals and/or the coupling 
systems exhibit changes in time, and we want an adaptive 
algorithm, choosing constant gains y ; ( t )  = y; i = 1 ,2  is 
recommended. This corresponds to an exponential weighting 
that reduces the effect of past data samples relative to new 
data in order to track the varying characteristics. 

t+m 
t=l t=l 

If we substitute b(t - 1) = 0 in (69), we obtain 

- a( t )  = a(t - 1) + Tl(t)g;(t)vl(t;a(t - 1)) (71) 

which is recognized as the LMS algorithm suggested by 
Widrow et al. [13] for solving the indicated least-squares 
problem under the assumption that there is no coupling of 
s l ( t )  into yz(t). Similarly, substituting b = 0 in (63) and (64), 
so that w Z ( t )  = y2(t), we obtain the RLS algorithm (e.g., 

respectively. The coupling systems H12 and H2l are unknown 
FIR filters of order 10. We only assume prior knowledge of 
the filter orders. The ratio of average power of the signal 
to average power of the interference at the first and the 
second microphones were -1.8 dB and -2 dB, respectively, 
indicating strong coupling effects. In Fig. 7 we have shown 
the measured signals y1 (t) and y2 (t). To identify the coupling 
filters we have implemented the iterative batch algorithm 
in (57) and (58), where the covariances are replaced by 
their sample estimates given in (59)-(62), with PI = PZ = 
1. The recovered signals are shown in Fig. 8. The post- 
processing signal-to-interference power ratio at the first and 
second microphones were 7.5 dB and 8.3 dB, respectively. For 
purpose of comparison, we have plotted in Fig. 9 the recovered 
signal at the first (primary) microphone using the LS method, 
which corresponds to solving (57) under the incorrect choice 
b = 0. The post-processing signal-to-interference power ratio 
in this case was 1.8 dB. Unlike the decorrelation approach 
that treats the signals as being equally important, the LS 
method regards sZ( t )  as being unwanted interfering signal, 
and therefore it makes no attempt to estimate it. By actually 
listening to the recovered speech signals, in the LS method 



WEINSTEIN et al.: MILTI-CHANNEL SIGNAL SEPARATION B Y  DECORRELATION 413 

one could hear the reverberant distortion due to the fact that 
the desired signal is canceled with some delay together with 
the interfering signal. This reverberant effect does not exist 
when using the method developed in this paper. 

APPENDIX: DERIVATION OF THE 
RECURSIVE ALGORITHM IN (63) (64) 

k=l 
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